

Guided THz transmission enabling applications

Dr. Emile de Rijk

Outline

- About SWISSto12
- Modular Corrugated wave-guiding components & technology
- Outlook: application platforms based on SWISSto12 components:
 - Material characterization
 - On wafer probing
 - Gas spectroscopy
- Sub-mm wave and THz Antennas
- Additive manufacturing for low-cost wave-guiding components

About SWISSto12 Spin-off from EPFL

- Company founded in 2011
- 4 Patented manufacturing technologies and components
- Supplier of wave-guiding components for millimeter waves and THz waves
 - Antennas
 - Waveguides
 - Quasi optical components

SWISSto12 capabilities

- Component electromagnetic design
- CAD and mechanical design

Manufacturing through large network of "best in class" Swiss precision

mechanics suppliers

Mechanical QC: 3D measurements

Electromagnetic measurements:

VNA in collaboration with EPFL

From 1 GHz to 43 GHz

(From **75 GHz** to **110 GHz**)

From 220 GHz to 330 GHz

From 500 GHz to 750 GHz

WR1.0 (750-1,100 GHz) VNA System

Image Courtesy of Agile

Outline

- About SWISSto12
- Modular Corrugated wave-guiding components & technology
- Outlook: application platforms based on SWISSto12 components:
 - Material characterization
 - On wafer probing
 - Gas spectroscopy
- Sub-mm wave and THz Antennas
- Additive manufacturing for low-cost wave-guiding components

The problem

Propagation losses of THz waveguides

Rectangular waveguides have increasing losses for sub-mm and THz wave

```
Theoretical losses
                              7.4 - 12 dB/m
WR-5.1 (140 – 220 GHz):
WR-4.3 (170 – 260 GHz):
                             ... 10 - 14 dB/m
WR-3.4 (220 – 330 GHz):
                             ... 14 - 20 dB/m
                             ... 18 - 28 dB/m
WR-2.8 (260 – 400 GHz) :
                             ... 26 - 39 dB/m
WR-2.2 (330 – 500 GHz):
WR-1.9 (400 – 600 GHz) :
                             ... 34 - 50 dB/m
                             ... 49 - 70 dB/m
WR-1.5 (500 – 750 GHz) :
                             ... 64 - 95 dB/m
WR-1.2 (600 – 900 GHz):
WR-1.0 (750 – 1100 GHz) :
                             ... 93 - 135 dB/m
```

SWISSto12 waveguides (Corrugated waveguides)
Losses ≈ **0.1** – **0.01** dB/m

The solution SWISSto12 Waveguide Modules WR 1.5 (500-750 GHz)

SWISSto12 Converter

For efficient coupling between traditional rectangular waveguide components (UG-387/UM flange) and SWISSto12 corrugated waveguide modules.

SWISSto12 Waveguide

Corrugated waveguide, inner diameter 8 mm

SWISSto12 Right Angle Bend

The solution SWISSto12 Waveguide Modules WR 1.5 (500-750 GHz)

Components allow for modular path-building

Technology Stacked Rings for Corrugated Waveguides

- Corrugated waveguides offer low loss transmission of sub-mm and THz waves
 Example: WR-1.5 (500 750 GHz) corrugated waveguide: losses ≈ 0.1 db/m
- Corrugated waveguides propagate an HE₁₁ mode, analogous to an optical fiber
 (E. De Rijk, Rev. Sci. Instr. , Vol. 82, 2011)
- Corrugated waveguides are hard to manufacture with conventional techniques
 Overcome limitations of conventional manufacturing with SWISSto12's
 Stacked Rings technology (Pat. Pend.)

Technology

Stacked Rings for Corrugated Waveguides

Reference:

Converter-Converter (12 cm propagation)

Measurement configuration:

Converters + 4 waveguides (32 cm propagation)

UG-387/UM Flange Rectangular waveguide

SWISSto12 Flange (Pat. Pend.)
Corrugated waveguide

Converter-Converter (12 cm propagation)

Converters + 4 waveguides (32 cm propagation)

- Losses dominated by the two Converters (12cm with ≈ 6-8 dB loss)
 Note: Equivalent 12cm of WR-1.5 rectangular waveguides : 5.6 to 8 dB losses
- SWISSto12 Waveguide modules introduce low losses (including converters: 32cm with ≈ 6-8 dB loss)
 Note: Equivalent 32cm of WR-1.5 rectangular waveguides: between 16 to 22 dB losses

Converter-Converter (12 cm propagation)

TxRx

Time gated measurement (window width ~ 100 ps)

Type -10

2 Converters + 4 Waveguides

600

Frequency [GHz]

Difference (Losses of 4 Waveguides)

650

700

750

Time gating smoothens the S₂₁ parameter curves

500

H₂O absorption

550

Converters + bend + 4 waveguides (32 cm propagation)

Converters + 2 bends + 1 waveguide (21 cm propagation)

SWISSto12 Waveguides and Bends Reflection results (S11)

SWISSto12 Waveguides and Bends Reflection results (S11)

Low losses observed when adding waveguide modules: < 3 dB/m for f < 700 GHz

Note: 12cm of WR-1.5 rectangular waveguide: between 5.6 and 8 dB of propagation losses Note: 52cm of WR-1.5 rectangular waveguide: between 24 and 34.9 dB of propagation losses

SWISSto12 Waveguides and Bends

TRL calibration on WR 1.5 rectangular waveguide

TRL calibration on WR 1.5 rectangular waveguide

SWISSto12 Waveguides and Bends **Phase stability**

Converter - Converter (12 cm propagation)

WR-1.5 rectangular waveguide (1 inch propagation)

SWISSto12 Waveguides and Bends Phase stability

Phase stability comparable to standard rectangular waveguides

Summary SWISSto12 Waveguide Modules

- Low-loss transmission
 losses > 10'000 times lower than in rectangular waveguides for WR-1.5
- High phase stability
 stability on par with rectangular waveguides
- Modular system with self-aligning fast connection system
 waveguide can be rapidly adapted to test & measurement needs
- Compatibility with existing technology efficient conversion from/to fundamental rectangular waveguides

SWISSto12 corrugated waveguides New Design 2014

- More compact design
- Coverage of all bands up to WR 1.0
- Lower-loss converters (Loss: -1.5 dB to -2 dB expected)

Outline

- About SWISSto12
- Modular Corrugated wave-guiding components & technology
- Outlook: application platforms based on SWISSto12 components:
 - Material characterization
 - On wafer probing
 - Gas spectroscopy
- Sub-mm wave and THz Antennas
- Additive manufacturing for low-cost wave-guiding components

SWISSto12 corrugated waveguides THz applications overview

On wafer Probing

Gas detection or Spectroscopy with THz

The Concept:

- THz signals (frequencies between 100 GHz and 3 THz) have strong interactions with gases
- Measure THz Spectral absorption of the gas, detect low concentrations
- Confine the gas under study inside the large volume of SWISSto12 THz waveguides

THz on-wafer probes

THz on-wafer probes via SWISSto12 waveguide

Low propagation losses

More than four orders of magnitude lower than rectangular waveguides

- No constraints on geometry
 Compact modules can be easily reconfigured
- Compatible with cryogenic systems

Material characterization at THz frequencies

- Existing solutions are expensive, bulky and require expert knowledge
- SWISSto12 offers a novel material characterization kit that is compact, versatile and easy to use

Material Characterization 1-Port configuration (S11)

- Calibration plane on the surface of an adjustable mirror closing the waveguide aperture (over-determined calibration algorithm)
- Sample placed on the surface of the mirror
- Enables efficient measurement of permittivity (ε') vs. frequency

Material Characterization 1-Port configuration (S11)

UG-387/UM Flange Interface with measurement device

Delay adjusted by a short mirror coupled to a micrometric screw

Material Characterization 2-Port configuration (S11, S21)

- Calibration made by moving the right part of the setup to generate delays (over-determined calibration algorithm)
- Thin sample inserted into the guided beam path
- Enables efficient measurement of
 permittivity (ε', ε") and permeability (μ', μ") vs. frequency

Material Characterization 2-Port configuration (S11, S21)

SWISSto12 material characterization kit Summary

- Reflection and transmission measurements
 Reliable characterization of dielectric and magnetic properties
- Compact and easy to use
 Direct connection to VNA frequency extender
 Works with large samples
 no free-space transmission, no time-consuming alignment required
- Vacuum and high/low-temperature compatible

Outline

- About SWISSto12
- Modular Corrugated wave-guiding components & technology
- Outlook: application platforms based on SWISSto12 components:
 - Material characterization
 - On wafer probing
 - Gas spectroscopy
- Sub-mm wave and THz Antennas
- Additive manufacturing for low-cost wave-guiding components

SWISSto12 antennas **SWISSto12** Converters are also antennas!

SWISSto12 corrugated antennas Antenna radiation pattern measurements

SWISSto12 corrugated antennas Radiation Patterns, Far Field, 10cm

SWISSto12 corrugated converter

Conventional Diagonal horn

SWISSto12 corrugated converter Antenna Directivity, Cross-Pol

SWISSto12 corrugated antennas

Radiation Patterns: Agreement with simulations

Focal plane arrays

Corrugated horn antenna Arrays for the QUBIC experiment

- Operating at 150 GHz
- Leightweight material: Aluninium
- High mechanical accuracy

Technology also applicable to phased arrays:

- Point to point telecom
- Radar front ends

Outline

- About SWISSto12
- Modular Corrugated wave-guiding components & technology
- Outlook: application platforms based on SWISSto12 components:
 - Material characterization
 - On wafer probing
 - Gas spectroscopy
- Sub-mm wave and THz Antennas
- Additive manufacturing for low-cost wave-guiding components

Plastic components Unprecedented Design Capabilities

Metal-coated components

Customized microwave absorbers

- Highly customizable
- Low cost
- Performance comparable with conventional (metallic) components
- Very short delivery times (~ 1-2 weeks)

Plastic components S21 parameter - WR-3.4 (220-330 GHz)

Customized plastic absorbers

- Performance in reflection similar to competitor absorbers at much lower thickness
- Absorbers can be designed and printed to perfectly match any surface

Feed antennas Metalized plastic diagonal horn

- WR 1.5 band (500 750 GHz)

Low-cost phased antenna arrays in applications such as:

- Radar front ends
- **Point to point Telecom**

SWISSto12 Contacts Meet us at:

- Swedish Microwave Days, March 2014, Göteborg, Swe
- European Conference on Antennas and Propagation, April 2014, The Hague, NL
- International Symposium on Space Terahertz Technology, April 2014, Moscow, Ru
- International Microwave Symposium, June 2014, Tampa, USA
- ARFTG, June 2014, Tampa, USA
- COST DNP meeting, June 2014, Zürich, CH
- IRMMW-THz, September 2014, Tucson, USA
- European Microwave Week, October 2014, Rome, I

SWISSto12 SA
EPFL Innovation Park
Building C
CH-1015 Lausanne

e.derijk@swissto12.ch +41 21 693 86 85

Summary

